

Rules of Origin, Origins of Terms, and Terms of Trade

Alan V. Deardorff University of Michigan

> Lunch talk at Yale March 29, 2016

Rules of Origin of Terms of Trade

- Three topics from my recent (?) work:
 - How Rules of Origin can hurt
 - Intro to Glossary
 - Origins of a few terms in my Glossary
 - Including the "Terms of Trade"

Rue the ROOs

Rue the ROOs

- Example of how ubiquitous FTAs can be worse then none
 - 3 countries, each with same amount of labor
 - 3 industries (but 6 goods)
 - Goods demanded in the same fixed proportions (X=Y=Z) in each country
 - Each industry has separate input & output
 - Constant labor requirements (a la Ricardo)
 differing symmetrically across countries and industries

Example

Country A					Country B				Country C			
	In	Out	Tot		In	Out	Tot			In	Out	Tot
X	10	30	40	Σ	20	10	3 0		X	15	40	55
Y	15	40	55	<u> </u>	10	30	40		Y	20,	10	30
Z	20	10	3 0	 Z	15	40	55		Z	10	30	40

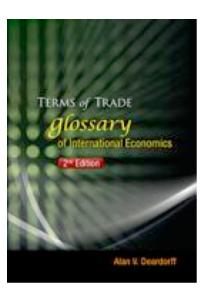
- Results of Example:
- With tariffs on all trade of 30%, consumption bundle requires 5/60 = ~8% more labor with FTAs than without.

Cost of X=Y=Z=1						
Autarky	125					
FT, no frag	90					
FT, frag	60					
<i>t</i> <33%, frag	60					

Rue the ROOs

Implication (surprising?)

 ROOs actually <u>can</u> cause the net welfare effect of ubiquitous FTAs to be negative for all countries, compared to no FTAs and positive tariffs.



Glossary

Deardorff's Glossary of International Economics: The Terms of Trade and Other Wonders

- Intro
 - Terms, with search
 - Bibliography
 - Figures
 - Lists
 - Origins

Origins of Selected Terms

- I'll look here (if there's time) at
 - CES function
 - Gravity model
 - Lerner diagram
 - Marshall-Lerner condition
 - Terms of trade
- For each I'll look both at the origin of the idea (the substance) and of the name.

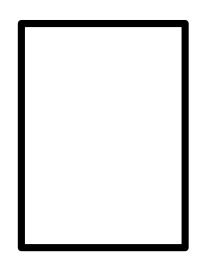
- Definition
 - With arguments $x = (x_1, ..., x_n)$

$$F(x) = A\left\{\sum_{i}^{n} a_{i} x_{i}^{\rho}\right\}^{1/\rho}$$

– where a_i , A are positive constants and

$$\sigma = \frac{1}{(1-\rho)}$$

is the elasticity of substitution.


- Substance introduced by
 - Arrow, et al. 1961.
 - Motive: To "derive a mathematical function having the properties of
 - (i) homogeneity,
 - (ii) constant elasticity between capital and labor, and
 - (iii) the possibility of different elasticities for different industries."

• Arrow, K.J., H.B. Chenery, B.S. Minhas, and R.M. Solow. 1961. "Capital-Labor Substitution and Economic Efficiency," *Review of Economics and Statistics* 43(3), (August), pp. 225-250.

- Named CES Function by the authors
- Other names:
 - "homohypallagic" function (Minhas 1962)
 - From Greek: homo = same, hypallage = substitution
 - "SMAC function" (Mukerji 1963)
- Basis of (Spence-)Dixit-Stiglitz utility function, allowing number of goods (varieties) be variable

The standard gravity model of trade:

$$T_{ij} = A \frac{Y_i^{\alpha_i} Y_j^{\alpha_j}}{D_{ij}^{\beta}}$$

where

 $T_{ij} = \underline{\text{trade}}$ between countries \underline{i} and \underline{j} $Y_i, Y_i = \text{GDP}$ of countries \underline{i} and \underline{j} $D_{ij} = \underline{\text{distance}}$ between countries \underline{i} and \underline{j} A > 0, $\alpha_i \approx 1$, $\alpha_i \approx 1$, $\beta \approx -1$

- Substance (but not name) introduce independently by
 - Tinbergen, Jan. 1962. *Shaping the Wor Economy*

- Pöyhönen, Pentti. 1963. "A Tentative Model for the Volume of Trade Between Countries," Weltwirtschaftliches Archiv
- Pulliainen, Kyosti. 1963. "A World Trade Study: An Econometric Model of the Pattern of the Commodity Flows in International Trade in 1948-1960," *Ekonomiska samfundets tidskrift*

Tinbergen's version:

$$E_{ij} = \alpha_0 Y_i^{\alpha_1} Y_j^{\alpha_2} D_{ij}^{\alpha_3}$$

where

 $E_{ij} = \underline{\text{exports}}$ of country \underline{i} to country j

 $Y_i = \text{GNP of country } i$

 $Y_j = \text{GNP of country } j$

 $D_{ij} = \underline{\text{distance}}$ between country i and country j

(very much like the basic gravity equation today)

• Pöyhönen's version:

$$a'_{ij} = cc_i c_j \frac{e_{ii}^{\alpha} e_{jj}^{\beta}}{(1 + \gamma r_{ij})^{\delta}}$$

where

 $a'_{ij} = \underbrace{\text{exports}}_{ij}$ of country i to country j $e_{ii} = \underbrace{\text{national}}_{ii}$ income of country i $e_{jj} = \underbrace{\text{national}}_{ii}$ income of country i $r_{ij} = \underbrace{\text{distance}}_{ij}$ of transportation

Differences:

- Notation
- Country fixed effects
- Role of distance

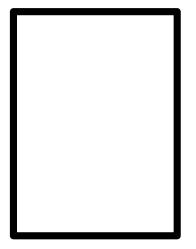
- Naming of the Gravity Model
 - None of these authors called it this
 - Tinbergen and Pöyhönen do not use the word gravity or note any analogy with gravitation

- Pulliainen does note the connection with gravity:
 - "The results of our empirical study show that the structure of international trade is capable of description in terms of gravitational theory. A formal analogy to the theory of gravitation (a=b=1, d=2) is attainable provided one feels it is desirable..."

- But another early user of the model was Linnemann, Hans. 1966. *An Econometric Study of International Trade Flows*. But
 - "Some authors emphasize the analogy with the gravitation law in physics, and try to establish that [α_3 =–2]. We fail to see any justification for this."

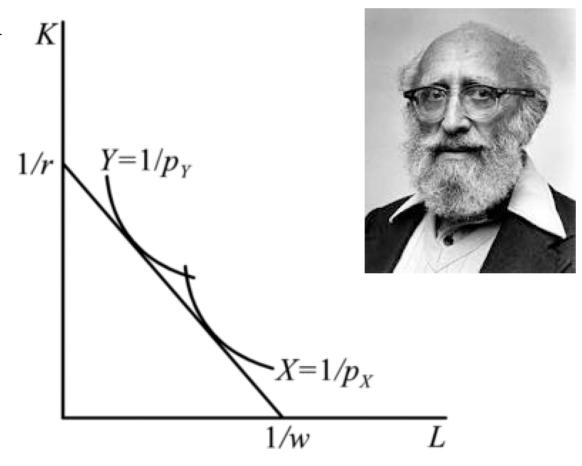
• First to call it the Gravity Model: Waelbroeck, J. 1965. "On the Structure of International Trade Interdependence," *Cahiers Economiques de Bruxelles*

- Waelbroeck
 - "Hypothesis 2: The gravity model"
 - "There is, as has been pointed out, an odd similarity between formulae (6) and (7) and the law of gravity, with Y_i and Y_j playing the role of masses, and this justifies christening the model as the gravity, or G, model.



- Earlier origins outside of trade
 - Substance
 - Zipf 1946, "The P_1P_2/D Hypothesis" for inter-city movements of freight, persons, information, etc.
 - Stewart 1947 for "Distribution and Equilibrium of Population," calling it "potential."

- Earlier origins outside of trade
 - Name
 - Bramhall & Isard 1960 on regional science: "gravity, potential, and spacial interaction models -- which for short we shall term gravity models."



Diagram

- Diagram was first published in Lerner, Abba P. 1952. "Factor Prices and International Trade," *Economica*
- But Lerner first drew it in an unpublished seminar paper in 1933.
- That paper was reproduced in 1952 "as it was originally written," according to the journal editor.

• First noticed in print in Findlay and Grubert. 1959. They cited Lerner, but never called it the "Lerner diagram."

• Findlay, Ronald and Harry Grubert. 1959. "Factor Intensities, Technological Progress and the Terms of Trade," *Oxford Economic Papers*

 First to call it the "Lerner diagram" was Findlay 1971.

• Findlay, Ronald. 1971. "Comparative Advantage, Effective Protection and the Domestic Resource Cost of Foreign Exchange," *Journal of International Economics*

- Others apparently before Findlay 1971 have called it the "Lerner-Pearce diagram," due to Pearce, Ivor F. 1952. "The Factor Price Equalization Myth," *Review of Economic Studies*
- That uses unit isoquants, not unit-value isoquants, and thus cannot do what the true Lerner diagram is able to.

Origins of "Marshall-Lerner Condition"

Origins of "Marshall-Lerner Condition"

• The condition:

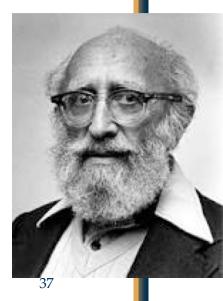
$$\eta_X + \eta_M > 1$$

 η_X , η_M are the demand elasticities for a country's exports and imports

- Condition for
 - Stability of international exchange of goods
 - Devaluation to improve the trade balance
 - Stability of the market for foreign exchange

Origins of "Marshall-Lerner Condition"

- Substance
 - Marshall, Alfred. 1923. Money, Credit and Commerce
 - In the context of offer-curve stability (of international exchange of goods)


- "elasticity of demand of each country...be on average to be less than one half."
- had done much of the work between 1869 and 1873, privately printed & circulated in 1879.
 [So he published 50 years later. Wow!]

Origins of "Marshall-Lerner Condition"

Substance

- Lerner, Abba P. 1944. The Economics of Control:
 Principles of Welfare Economics
- Context: Stability of full employment in Keynesian model where net exports are part of aggregate demand.
- Thus, will fall in prices (or currency depreciation) cause net exports to rise or fall?
- "The critical point is where the sum of the elasticity of demand for imports plus the elasticity of demand for exports is equal to unity."

Origins of "Marshall-Lerner Condition"

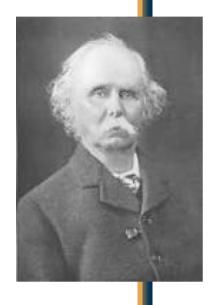
- Substance
 - Robinson?
 - Robinson, Joan. 1937. Essays in the Theory of Employment
 - Same question as Lerner, but her answer was: $k\{[\varepsilon_f(1+\eta_h)/(\varepsilon_f+\eta_h)] Ip[\eta_f(1-\varepsilon_h)/(\eta_f+\varepsilon_h)]\} > 0$ (Notation is different. ε_f , ε_h are the demand elasticities.)
 - This becomes the M-L condition with balanced trade and infinite supply elasticities, but Robinson didn't mention this until her 1947 revision.
 - So no.

Origins of "Marshall-Lerner Condition"

- Name
 - Condition was cited by others Polak (1947),
 Haberler (1949) but not by that name.
 - Polak: "the well-known formula"
 - Haberler: "Lerner condition" (although he acknowledged both Marshall and Robinson)

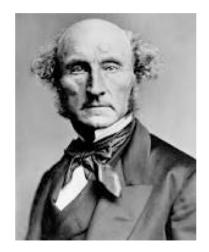
Origins of "Marshall-Lerner Condition"

- Name: First was
 - Hirschman, Albert O. 1949. "Devaluation and the Trade Balance: A Note," Review of Economics and Statistics
 - His point was the M-L is wrong for improving a non-zero trade balance:
 - "Our results permit the following conclusions:
 - (a) The "Marshall-Lerner" condition for devaluation to have a favorable effect on the trade balance (sum of the two elasticities larger than unity) holds only when imports are equal to exports."


- Definition
 - The relative price, on world markets, of a country's exports compared to its imports
 - Most commonly, if P_x = price of exports P_m = price of imports
 - Then

$$TT = P_x/P_m$$

- Substance and Name
 - Marshall, Alfred. 1923. Money, Credit and Commerce
 - (For countries *E* and *G*,)


"the amounts to which *E* and *G* would be severally willing to trade at various 'terms of trade'; or, to use a phrase which is more appropriate in some connections, at various 'rates of exchange."

- Was Marshall the first?
 - Taussig (1927) says so.
 - Mill (1848) did not use the phrase
 - I've not checked all in between

- Alternative (or more precise) definitions
 - -Taussig (1927)
 - Preferred the term "barter terms of trade"
 - Also defined
 - "Net barter terms of trade"
 - "Gross barter terms of trade"
 - (Differ if trade is not balanced.)

"Net barter terms of trade"

$$NBTT = P_x/P_m$$

 $P_x = \text{price of exports}$
 $P_m = \text{price of imports}$

"Gross barter terms of trade"

$$GBTT = Q_m/Q_x$$

 $Q_x = \text{quantity of exports}$
 $Q_m = \text{quantity of imports}$

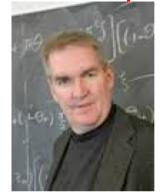
- Alternative (or more precise) definitions
 - Viner (1937) said classical economists cared about exchange of factors, as well as goods
 - Thus defined
 - -Single factoral terms of trade
 - Double factoral terms of trade

"Single factoral terms of trade"

SFTT = NBTT
$$\times A_x = (P_x/P_m) \times A_x$$

 $A_x = \text{own factor productivity producing exports}$

"Double factoral terms of trade"


$$DFTT = NBTT \times A_{x/}A_m (P_x/P_m) \times (A_{x/}A_m)$$

 $A_x =$ foreign factor productivity producing imports

- And in international finance (?)
 - Backus, David K., Patrick J. Kehoe, and Finn E. Kydland. 1994. "Dynamics of the Trade Balance and the Terms of Trade: The J-Curve?" *American Economic Review*

"The terms of trade, in this paper, is the relative price of imports to exports..."

